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USE OF ARBITRARY QUASI-ORTHOGONALS FOR CALCULATING
FLOW DISTRIBUTION IN A TURBOMACHINE
by Theodore Katsanis
Lewis Research Center

National Aeronautics and Space Administration
Cleveland, Ohio

ABSTRACT )’%52%f74ir,

A method of analyzing flow through a turbomachine is summarized which is
suitable for computer programming. The method, which has been reported in NASA
publications, is based on an equation for the velocity gradient along an arbi-
trary quasi-orthogonal rather than the normal to the streamline as used in
previous methods. A quasi-orthogonal is defined to be any curve that intersects
every streamline between the flow boundaries exactly once, as does an orthogonal
to the streamlines. With this method a streamline analysis can be made on any
given stream surface. A quasi-three-dimensional solution can be obtained by
using the method for a hub-to-shroud analysis, followed by blade-to-blade
analyses at hub, mean, and shroud. As an example, the method was applied to a
radial inflow turbine with splitter blades. The complete quasi-three-dimensional
solution was oObtained in a singie computer run. (Q;Ajigch“

INTRODUCTION

Quasi-three-dimensional methods have been developed and used for analyzing

.

flow through mixed-flow turbomachineéf[l to 4]. The first step in these methods

is to obtain a two-dimensional solution on an assumed mean stream surface between
the blades. This two-dimensional solution is based on an equation for the
velocity gradient along the normal to the projection of the streamlines on a

plane containing the axis of rotation. This plane is called the meridional plane,
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and the projections of the streamlines are called meridional streamlines.

The streamlines and their normals are used to establish a grid for a meridional-
plane solution. In cases where the distance between hub and shroud is great

and there is a large change in flow direction within the rotor, the normals

vary considerably in length and direction during the course of the calculations.
Therefore, it becomes difficult to obtain a direct solution on the computer with-
out resorting to intermediate graphical steps.

The use of normals is not essential to the method, and it appeared pos-
sible to obtain a direct solution by the use of a set of arbitrary curves from
hub to shroud instead of streamline normals. These arbitrary curves will be
hereinafter termed quasi-orthogonals. The quasi-orthogonals are not necessarily
orthogonal to each streamline but merely intersect every streamline once across
the width of the passage. The quasi-orthogonals remain fixed regardless of any
change of streamlines. By using this technique, it appeared possible to develop
a computer program that would calculate a streamline solution in the meridional
plane without any intermediate graphical procedures even for turbomachines with
wide passages and & change in direction from:radial to axial within the rotor
blade.

From the meridional solution it is possible to obtain blade surface veloc-
ities by several methods. One method is by means of a simple approximate formula
based on the assumption of linear velocity variation between blades and absolute
irrotational flow [5]. This gives good results within the rotor away from the
inlet or outlet. Another method is the use of potential flow equations which
may be solved by relaxation methods [6], which gives good solutions, but in-

volve a rather tedious procedure, even with the use of a computer. It was realized




that the basic idea used to obtain a meridional solution using quasi-orthogonals
could be applied to obtain a blade-to-blade solution. In this case, the quasi-
orthogonals run from blade-to-blade on a stream surface determined by the
meridional solution. By extending the solution upstream and downstream, a

good solution throughout the rotor was obtained with a reasonable effort.

This paper summarizes a quasi-three-dimensional analysis method based on
using quasi-orthogonals to obtain both the meridional and the blade-to-blade
solution. Complete details are given in [7 and 8]. The numerical procedure
required for obtaining solutions using a digital computer are outlined. As a
numerical example of the application of the analysis method, a high specific

speed radial-inlet mixed-flow gas turbine with splitter blades is analyzed.

NOMENCLATURE
a parameter, Eq. (11)
b . parameter, Eq..(11)
c parameter, Eq. (11)
Cp specific heat at constant pressure, ft-lb/slug-oR
g acceleration due to gravity, ft/sec2
h static enthalpy, ft-lb/slug
m distance along meridional streamline, £t -
N number of blades
An distance between two stream surfaces
P absolute static pressure, 1b/ft®
Ap" loss in relative total pressure between inlet and any point, lb/ft2
q distance along an arbitrary three dimensional curve, ft

43,490 intersection of quasi-orthogonal with boundary of flow passage




R gas constant, ft-1b/slug-°R
r radius from axis of rotation, ft
ry, radius where mean stream surface is assumed to deviate from mean blade

shape in radial-flow turbine

r, radius of curvature of meridional streamline, ft
T temperature, °R
t time, sec

tg Dblade thickness in the circumferential direction, ft
V  absolute fluid velocity, ft/sec

W relative fluid velocity, ft/sec

W mass flow between two stream surfaces,slug/sec

zZ axial coordinate, ft

o angle between meridional streamline and 2z axis, radians

B angle between relative velocity vector and meridional plane, radians
Y ratio of specific heats

0 relative angular coordinate about the axis of rotation, radians

A prerotation riVg i, sq ft/sec

p mass density, slug/cu ft

®  rotational speed, radians/sec

Subscripts:

i inlet

m component is direction of meridional streamline, see Fig. 2
n component normal to gquasi-orthogonal and An

r radial component

Z axial component

6 tangential component




Superscripts:

! absolute stagnation conditions

" relative stagnation conditions

BASIC ASSUMPTIONS AND PROCEDURE
The basic assumptions are that there is steady relative flow, and that
the fluid is nonviscous and isentropic. To this a correction for losses is
made by assuming a loss in relative total pressure varying fron zero at the
inlet to a maximum at the outlet of the blade passage. The problem of obtain-
ing an approximate solution to a three-dimensional fluid flow problem is con-
siderably simplified if certain assumptions are made so that the problem can
be reduced to the solution of a series of two-dimensional problems on hub-to-
shroud and blade-to-blade stream surfaces, as illustrated in Fig. 1. The method
used herein for obtaining a streamline solution on any stream surface, whether
hub-to-shroud or blade-to-blade, is essentially the same and will be hereinafter
calied the Q0 Method.

The initial assumption used here is that the mean surface between the blade
is a stream surface. With this assumption, a two-dimensional meridional plane
solution is obtained by the QO Method. This solution defines a blade-to-blade
surface for each meridional streamline, and then solutions are obtained on these
surfaces by the Q0 Method, giving a velocity distribution throughout the passage.

EQUATIONS FOR STREAM SURFACE ANALYSIS

If a gtream surface (hub—to—shroud, blade-to-blade, or other) is known or
assumed, together with the streamline spacing normal to the stream surface, the
problem has been reduced to a two dimensional problem. Presented here is a

method of solving this two dimensional problem for fairly general cases. The



key to the method is an equation for the directional derivative of the relative
velocity W, which can be derived from Euler's equation for a nonviscous fluid

in a rotating coordinate system:

2
dwr_gw9+wr) __iaj
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a(rWy + ar®) 13 &
at ='E§g (1)
aw, 19
T

Here the usual convention is used that

ar(r,6,z,t) _ ar(r(t),6(t),z(t),t)

T dt dt

where 1r(t),8(t),z(t) are the parametric equations for the motion of a mass
particle as a function of time. The coordinate system is shown in Fig. 2.

If we multiply Eq. (1) by Wr, Wg, and W,, respectively, then add and
combine terms, we get the energy equation
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With the assumption of steady isentropic flow, so that %'%% = %%,

Eq. (2) can be integrated along a streamline from the inlet to obtain
Wz - WE = (1)2(1‘2 - r%) - Z(h - hi) (3)

Now, use the fact that

V2 = WP+ 2Vgr - afrf (4)
to get
2
h. = h! V_i - 1 W]?- + 2O\ - wzrg (5)
R - e 2




Substituting this in Eq. (3) gives

2 .2
h=h:!L-m7\+£———w)2_W (8)

Let q denote the distance along an arbitrary curve. With the assumption

of isentropic flow, so that X %B = %Ev Eq. (6) can be differentiated to obtain
p aq g

1
dp _dBi oy, 20T _ AW

1
pdg dq dgq dgq dq

(7)
Also the directional derivative of the pressure along this curve is

Gp _2par,2pao , dpaz
dq_—sgdq+d9dq+dqu (8)

Evaluating the partial derivatives of the pressure in this equation by

using Eq. (1), substituting this in Eg(7), and solving for %g, gives

2 2
o _ foPr 1 aw  (Wo *or) ar 130 + ) 4o 1 s as
dq 7| W TWat W dg W at q  Wat dq
dh;
+1 1 _@wdA (9)
W dq W daq

Note that

W, = W, cos o

W, =Wcos

Wg =W sin 8
and that

This can be used in evaluating the derivatives on the right side of Eq. (9)

When this is done, we have
1
aw dr az ao .1y a4y
N oa =+ =+c =—=+=—-— - — 10
dq & dq dq ¢ dg W dg dq (10)



where
- 2 . 2 dw ~
- W cos o cos®@ W sin”B + sin o cos B M _ o sin B
r. r dm
. 2 daw,
b=-¥sinacos B o5 o cos g —2 > (11)
r. dm
dWg
c=Wsina sin B cos B +1r cos B e + 2w sin o N

In equation (10) the values of the parameters hi and A\ associated with a
point inside the rotor is the value of that parameter at the inlet for the
streamline which passes through the point. Then dhi/dq refers to the total
enthalpy at the inlet as a function of the distance along the arbitrary curve
q at the point considered. Further details of the derivation of Eq. (10) are
given in [7].

For checking continuity of flow, it is necessary to calculate the density.

Losses can be approximated by assuming a loss in relative total pressure op".

With this -1 L1
iY.'-liv ; T\ /T! (y-1) o [T
o = (= pl - —l> ) TN i e (12)
T i T \T P RTY AT
i i e ]
where
- el
l =1 - Wz + 2(.07\ ’ wW=r (15)
and
7" 2WN\ - wzrz
=l T (1)
i Cpti
Weight flow across a quasi-orthogonal can now be computed by
4
W o= PW,, Andq (15)

S




where An is the distance between two stream surfaces on either side of the
stream surface being analyzed, w 1is the weight flow between these surfaces
per blade, and W, is the component of W normal to the surface defined by
the quasi-orthogonal and the direction in which An is measured. The limits
q0 and gq; are the intersection of the quasi-orthogonal with the boundary of
the flow passage. The flow area considered is indicated in Fig. 1.
NUMERICAL TECHNIQUES AND PROCEDURE

The procedure for utilizing Eq. (10) to obtain a solution on a prescribed
stream surface is to estimate the parameters in Eq. (11) so that Eq. (10) cen
be integrated with the condition that the continuity Eq. (15) be satisfied. At
each quasi-orthogonal this determines a weight flow distribution, which can be
used to obtain an improved streamline pattern. This leads to a better estimate
of the parameters in Eq. (11), and by iteration a flow distribution is obtained
on the stream surface.

Calculation of Parameters in Equation (10)

The first step in the numerical integration of equation (10) is the

numerical evaluation of the parameters o, B, Ta, Zzﬁ, and ;;2 for use in

fig. (11). In order to evaluate the parameters o, B, and r,, a streamline
geometry must be established.‘ For this, fixed lines between flow boundaries are
gpecified on the assumed stream surfaces, at several stations from inlet to
outlet (for either a hub-to-shroud or a blade-to-blade stream surface). These
lines are the quasi-orthogonals along which Eq. (10) will be integrated. For
an initial approximation to the streamlines, each quasi-orthogonal can be

divided into a number of equal spaces. The quasi-orthogonals and initial stream-

line assumptions are shown in Fig. 3 for a hub-to-shroud stream surface of a radial
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inlet gas turbine. The success of the method is based on the tact that, for
a reasonable assumed streamline pattern, the geometrical streamline parameters
involved are not too different trom those of the final solution.

Along each assumed streamline we have r as a function of 2z at a number

2
of points. It is desired to approximate ar ang 4T from these values. For

dz
any functions given at discrete points only,(there :;e several ways a curve can
be fitted through these values so as to approximate the original functions. A
convenient method that has received much attention lately is the piecewise cubic,
with matching first and second derivatives, usually referred to as a cubic spline
function. Since for small slopes, the second derivative approximates the curvature
of a function, the strain energy of a spline can be approximately minimized by
minimizing k_/‘(f"(x:))z dx, where f(x) denotes the curve described by the
spline. The cubic spline has this property, as is proven in [9]. Thus the cubic
spline is the mathematical expression of the shape taken by an idealized spline
passing through the given points. In [9] a simple procedure is outlined for
determining the spline fit curve when the ccordinates of the points are given
together with two arbitrary end conditions. One end condition that was used was
that the second derivative at an end point is one half the second derivative at
the next point. This is equivalent to bending the spline slightly beyond the
last point, instead of just letting it be straight. An alternate end condition
is the slope at an end point. The cubic spline function provided a simple
analytical method of determining many of the parsmeters in the equations. The

cubic spline was used to determine first and second derivatives, curvature,

interpolated function values, interpolated derivatives, and for integration.
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One further point concerning the spline fit should be mentioned; that is,
the approximation to an actual spline curve is dependent on the slope not being
too large. Experimentally, good results are obtained if the absolute value of
the slope is not greater than one. In applying this method to streamlines on a
radial turbine, there is a problem since the angle may be around -90° at the
inlet. This is easily overcome by rotating the coordinate axes 45° so that the
maximum slope is about one.

2
After & and 2T  have been determined, o and L are given by

dz de rC
a = tan'l 92 (16)
dz
dzr
2
1 dz

2
1 + (EE)
dz

The curvature rather than the radius of curvature is computed to avoid

s s . dzr
division by zero in case — = 0.
dz

The next quantity to be calculated is B. Since 6 is known at each

quasi-orthogonal along a streamline, the cubic spline can be used to approxi-

do

mate T The angle B 1is then calculated from
= tan-1(rd® 18
b (-22) (28)
For an initial calculation, W may be assumed constant throughout the
AWy, dWg
rotor. Since Wm = W cos B and Wg = W sin B, the quantities o and e

can now be approximated using the cubic spline. Now all quantities necessary

for the integration of Eq. (10) are determined.
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Integration of Equation (10)

Given an initial value of W, Eq. (10) can be accurately integrated by
means of a Runge-Kutta method. Reference [7] gives further details on the
method. Since the initial value is not known, a guess of some kind must be
made. This results in the velocity distribution along the quasi-orthogonal.
Equations (12) to (14) can be used to compute the integrand in Eq. (15), which
can then be numerically integrated using the cubic spline approximation. The
computed total weight flow is then compared with the actual weight flow. If
the computed weight flow is too small, the initial velocity is increased, and
vice versa. Then the velocity distribution and the weight flow are recalculated.
A few iterations will determine the initial velocity that will give the correct
weight flow.

Calculation of Improved Streamlines

From Eq. (15) the weight flow distribution along the gquasi-orthogonal can
also be obtained. Along any quesi-orthogonal, inverse interpolation (by a spline
approximation) can be used to determine the streamline spacing that will give
equal weight flow between any two adjacent streamlines (see Fig. 4). When this
is done for every quasi-orthogonal from inlet to outlet, a new estimate for the
streamline pattern is obtained. However, if this streamline pattern is used for
further iterations the procedure does not converge due to the fact that the
streamlines become rough and uneven. This may be avoided by using only a fraction
of the calculated streamline corrections, perhaps one-tenth or less. With this,
the streamlines remain smooth, and a solution is reached in a single computer

run.
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A Quasi-Three-Dimensional Solution

The procedure described gives a solution for any known stream surface.
Since the stream surfaces are not known they must be approximated. For this
reason a true three-dimensional solution is not obtained, but only what is
usually referred to as a quasi-three-dimensional solution. One procedure
that can be used is as follows. Assume that the mean hub-to-shroud stream
surface has the same shape as the mean blade surface. A deviation from this
may be specified near the inlet if there is an incidence angle. For this
initial approximation, An in Eq. (15) is equal to Eiz - tg. With these
assumptions the Q0 Method is used to obtain a meridional solution. The
streamlines obtained from this solution are used to define surfaces of
revolution from blade-to-blade, with An (in Eq. (15)) for these blade-to-
blade surfaces determined by the streamline spacing in the meridional solution.
A separate blade-to-blade solution could be obtained for each streamline;
however, in most cases three blade-to-blade solutions would be adequate, one
at the hub, one at the mean streamline between hub and shroud, and one at the
shroud. This gives a relative velocity distribution throughout the passage.
Further details of the procedure outlined above are given in [7 and 8].

The solution could be refined by using the blade-to-blade solution to
obtain a better approximation to several hub-to-shroud stream surfaces, con-
tinuing until the hub-to-shroud and blade-to-blade solutions were completely
consistent. This has not been done.

NUMERICAL, EXAMPLE
The method outlined has been applied to the analysis of a small radial

flow turbine. The calculations were made on a digital computer. The hub-shroud
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profile and quasi-orthogonals in the meridional plane are shown in Fig. 3,
together with the equally spaced streamlines used for the initial assumption.
The blade has radial elements, except near the trailing edge of the splitter
blade, where the taper is not the same on both sides of the blade. The

pertinent data for the case analyzed is given in the following table.

DATA FOR NUMERICAL EXAMPLE

Total number of blades ' 22
Number of splitter Dblades 11
Tip radius, r;, in. 3.01
‘Rotational speed, r.p.m. 38 500
Fluid Argon
Weight flow, 1b/sec .611
Inlet total temperature T;, °R 1950
Absolute tangential velocity at inlet, Ve,i: ft/sec 883
Inlet relative flow angle, B;, degrees -25.1
Inlet total pressure, pi, psia 12.97 ‘
Loss of relative total pressure between inlet .25 ;
and outlet, Ap", psi (Assumed to vary linearly i
along streamline. )

The normal blade thickness was given by means of tabulated values on a grid.
Blade thickness at any given point was obtained by linear interpolation. It
was assumed that hi and A were constant across the inlet.

At the inlet, the hub-shroud stream surface was assumed to deviate from

the blade surface in order to agree with the flow direction coming into the
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rotor. Let 1ry denote the radius where the mean stream surface is assumed to
deviate from the mean blade shape. Equation (13) of [5] gives an approximate

equation for determining vy, which may be written as follows:
ry = rie'o'7l Ja\e) (19)

The stream surface was assumed to vary cubically with r Ybetween ry and ry.

The first step in the solution is to obtain a meridional plane solution.
This solution was extended downstream of the blades, by assuming a stream
surface extending downstream from the blades at an angle determined by the
blade angle corrected for blockage. Twenty meridional streamlines were calculated
by the QO Method. The meridional streamline pattern obtained at hub, mean, and
shroud is shown in Fig. 5. This gives the coordinates for a blade-to-blade
surface at the mean meridional streamline, as well as the streamline spacing
on the guasi-orthogonals at hub, mean, and shroud. With this, the normsal
streamline spacing and the blade coordinates were calculated at each of the three
surfaces, and three blade-to-blade solutions were obtained by the Q0 Method.
The three blade-to-blade solutions were extended upstream of the inlet, because
of nonuniform conditions at the inlet. The solution gives the 6 and m
coordinates of the blade-to-blade streamlines, which are plotted in Fig. 8.
The complete quasi-three-dimensional solution was obtained in a single computer
run, taking 6 minutes on the IBM 7094 computer-.

Figure 7 shows the blade loading on main and splitter blades at hub, mean,
and shroud. The velocities are increasing over most of the blade. However,
there is a large negative velocity gradient on the pressure surface at the inlet
near the hub. It is even more severe at the end of the splitter blade near the

shroud. This indicates the splitter should be extended further from the aero-
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dynamics point of view. However, the splitter is already longer than needed
at the hub, and stress consideration may not permit msking the splitter extend
beyond the point where it ends on the hub. Figure 8 shows the absolute velocity
distribution on the stationary shroud. Here, there are large negative velocity
gradients. Of course, a negative velocity gradient cannot be eliminated
entirely with the leaving absolute velocity lower than the inlet velocity,
although it can be minimized by careful design. On the pressure surface the
nearly linear distribution is about the best possible for avoiding flow separa-
tion, under these circumstances. However, along the shroud there is an increase,
and then a greater decrease in a shorter distance. It is difficult to avoid
something like this if there is to be any loading of the blades at the shroud.

This type of analysis could be very useful as a design tool, since it
points up the location of possible flow separation. Modifications can be made
in the geometry to improve on the velocity distributions until a good design
is evolved.

CONCLUDING REMARKS

A method of analysis of turbomachines is summarized that is suitable for
computer programing. The method, which has been reported in references 7 and 8,
is based on a streamline analyisis of a stream surface using quasi-orthogonals.
A quasi-three-dimensional solution can be obtained by using the method first for
& hub-to-shroud analysis. followed by blade-to-blade analyses at hub, mean, and
shroud. As an example, the method was applied to a radial inflow turbine with
splitter blades. The complete quasi-three-dimensional solution was obtained in
a single computer run. The FORTRAN computer program used for the numerical
example may be obtained from the author by anyone who is interested in using the

method.
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